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ABSTRACT : 

  The present paper provides an investigation on behaviour of a test particle, Doppler effect and Newtonian 

analogue of force in the cosmological model. If a particle is initially at rest then from equation of geodesic it is 

found that for all such particles the components of spatial acceleration would vanish and the particle would remain 

permanently at rest.   
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1. INTRODUCTION  

  Many researchers have focussed their mind to words the study of behaviour of test particle, Doppler effect 

and Newtonian analogue of force in the cosmological model [5, 8, 10,15]. The cosmological models  in the 

presence of electromagnetic fields in general relativity have attracted a lot of interest in recent years. The behavior 

of magnetic fields in the models of universe has been studied by Roy and Prakash [8]. Magnetohydrodynamics 

(MHD) is the study of motion of an electrically conducting fluid in the presence of a magnetic field. Electric 

currents induced in the fluid as a result of its motion modify the field; at the same time their flow in the magnetic 

field produces mechanical forces which modify the motion. Magnetohydrodynamics own its peculiar interest and 

difficulty to this interaction between the field and the motion. It is well known that galaxies and interstellar spaces 

exhibit the presence of strong magnetic fields [15] which impart a sort of viscous effect to the fluid flow [1]. The 

magnetic field assumes an important role for the universe. The behavior of the magnetic field of a star was 

investigated by Cowling [2] and Wrubel [2(a)]. The important results obtained make possible the interpretation 

of magnetohydrodynamical processes in stars. When motions of stellar metter caused by the electromagnetic 

forces are taken into account, new properties may be revealed and the non-stability of the magnetohydrodynamical 

processes in stars may be studied. A cosmological model in the presence of magnetic field has been studied by 

Zeldovich [14] and later by Thorne [11]. Magnetic field in stellar bodies was discussed by Monoghan [4]. Roy 

and Prakash [8] have discussed cosmological model in presence of incident magnetic field and have also discussed 

there in behaviour of a test particle and Dopper effect in the model. Singh and Yadav [10] have constructed model 

taking cylindrically symmetric metric of Marder [3] where they have also discussed behaviour of a test particle, 

Dopper effect and Newtonian and logue of force in the model. The present all their in his earher paper [6] also 

http://www.jetir.org/


© 2021 JETIR March 2021, Volume 8, Issue 3                                                                    www.jetir.org (ISSN-2349-5162) 

JETIR2103415 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 188 
 

found cosmological model for cytindrically symmetric space time with an electromagnetic field and which is 

given by 

(1.1) 2 2 2 2a T
ds N dT dX

T

   
   

  
 

2n
1/ 2 1/ 2 2(a T) T (a T) dY        

2n
1/ 2 1/ 2 2(a T) T (a T) dZ



        

where symbols have their usual meanings (as given in ref. [6]). 

  In this paper taking cylinarically symmetric cosmological model given by (1.1), we have 

discussed and studied behaviour of a test particle, Dopper effect and also have investigated 

Newtonian analogue of force in the model.  

2. Behaviour of a Test Particle in the Model : 

  The motion of a test particle in the model (1.1) is given by the geodesic viz.  

(2.1)  
2

2

d x
0

ds
  

(22)  
2 1/2 1/2

2 1/2

d Y 1 T n(a T) dY dT
. 0

ds 2 T (a T) ds ds

  
  

 
 

(2.3)  
2 1/2 1/2

2 1/2

d Z 1 T n(a T) dZ dT
. 0,

ds 2 T (a T) ds ds

  
  

 
 

(2.4)  

2n
1/2 1/2 1/2 1/2 22

2 2

T (a T) (T nT (a t) ]d T 1 dY

ds 2N (a T) ds

              
 

 

 

2n
1/2 1/2 1/2 1/2 2

2

T (a T) T nT (a T)1 dZ

2N (a T) ds

                  
 

 

 

2
a dT

0.
2T(a T) ds

 
  

  
 

If a particle is initially at rest, that is, if  
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(2.5)  
dX dY dZ

0
ds ds ds

    

then from equations of geodesic we find that for all such particles the component of spatial 

acceleration would vanish, namely 

(2.6)  
2 2 2

2 2 2

d X d Y d Z
0

ds ds ds
    

and the particle would remain permanently at rest. 

3.  The Doppler Effect in the Model  

   The path of light in the model (1.1) is given by 

(3.1)  
2 2

2n
2 1/2 1/2dX dY

N (a T) T (a T)
dT dT

   
        

   
 

 

2 2
2n

1/2 1/2 dZ N (a T)
(a T) T (a T)

dT T

  
       

 
 

and for the case when the velocity is along z-axis, equation (3.1) gives 

(3.2)  

n
1/2 1/2

1/2

T (a T)dZ
N (T)

dT T

        

Hence the light pulse leaving a particle at (0,0, z) at time T1 would arrive at a later time T2 

given by 

(3.3)  
2

1

T Z

T 0
(T)dT dZ    

Hence 

(3.4)  2 2 1 1 1

dZ
(T) T (T) T T

dT
        

 1 1 Z 1(T) T u T      
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where 
Z

dZ
u

dT
 is the Z-component of the velocity of the particle at the time of emission and 

1 2(T) and (T)  are the values of (T) for T = T1 and T = T2 respectively. From the above 

equation we get  

(3.5)  1 Z
2 1

2

(T) u
T T

(T)

  
   

 
 

  The proper time interval 0

1T between successive wave crests as messured by the local 

observer moving with the source is given by 

(3.6) 
22

0 2

1

N (a T) dX
T N (a T)

T dT

   
      

 

 

 

2
2n

1/2 1/2 dY
T (a T)

dT

 
     

 
 

 

1/2
2

2n
1/2 1/2

1

dZ
(a T) T (a T) T

dT

  
       

  

 

This can be written as  

(3.7)  

1/2
2

0 2

1 1

N (a T)
T u T

T

 
    

 
 

where u is the velocity of source at the time of emission.  

Similarly we may write  

(3.8)  
1/2

0

2 2

a T
T N T

T

 
   

 
 

As the proper time interval between the reception of the two successive wave crests by an 

observer at rest at origin. Hence following Tolman [12], the red shift in this case is given by 
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(3.9)  
0

2

0

1

T

T

  


 

n1/2 1/2 1/2

1 1 Z

1/2

1 1

n
1/2 1/21/2
1 22 2

1/2

2

N T (a T ) ua T

T T

T (a T )a T
N u

T T

        
  

    
        
  
 

 

4. Newtonian Analogue of Force in the Model 

  Here we study the effect of electromagnetic field in the force terms R and S (Narlikar 

and Singh [5]). It is well known that Christoffel three – index symbols for the Riemannian 

metric of general relativity 

 2ds g dx dx 


  

defined by 

(4.1)   
g gg1

,
2 x x x

 

  

     
     

   
 

and  

(4.2)   1g ,1


    

are not tensor, but the difference of two such symbols of the same kind is a tensor. Thus if 

  be Christoffel three-index symbols for another metric. 

(4.3)  2ds y dx dx , 


  

the difference  

(4.4)     

  
      

is a tensor.     

  The equation of the geodesic may now be cast in the form 

(4.5)  
2

2

d x dx dx dx dx

ds ds ds ds ds

    
 

 
     
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In a region free from gravitation the geodesics are given by 

(4.6)  
2

2

d x dx dx
0

ds ds ds

  



    

Hence the gravitational effects depend only on the residual term-
dx dx

.
ds ds

 



 Since 

dx

ds

 
 
 

is 

arbitrary, the gravitational effect have to be associated with the tensor 


 only. It can be seen 

that (Rosen [7]) 

(4.7)  1

1, 1, ,1

1
g (g g g )

2

 

     
     

where comme (,) denotes co-variant differentiation with respace to y – metric. A co-variant 

differentiation with respect to g – metric will be denoted by a semicolon (:). 

From (4.7) we have  

(4.8)  m m, m, ,m

1
g g g g

2



      
       

If we write  

(4.9)  m mg 

  
    

then and

 
  as given by (4.7) and (4.8) are associated tensor.  

  The -tensors thus defined contain only the first order partial derivatives of the metric 

potential g


. Since -tensors are defined against the background of an arbitrary flat 

substratum, they would very with the choice of the later for the same gravitational field. The 

importance of the ’s consists in the fact that the gravitational force of the Newtonian theory 

appears through them. 

  The vectors R and S are defined as follows (Nerlikar and Singh [5]): 
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(4.10)  
H,

R ,
H



 
    

(4.11)  S g g 

  
   

 
,

H,
g g

H



 
   

where 
g

H
y

  

For the line element (1.1) we have 

(4.12)  2

11g N ,   

 
2n

1/2 1/2

22g (a T) T (a T) ,        

 
2n

1/2 1/2

33g (a T) T (a T) ,


        

 

2

44

N (a T)
g

T


  

(4.13)  11

2

1
g

g
   

 
2n

22 1 1/2 1/2g (a T) T (a t) ,


         

 
2n

33 1 1/2 1/2g (a T) T (a T) ,         

 
44

2

1 T
g ,

N (a T)



 

(4.14)  
3

4 (a T)
g N

T


   

The corresponding flat metric y


is taken to be that of special relativity 

(4.15)  2 2 2 2 2ds dX dY dZ dT      

Thus 
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(4.16)  y [ 1, 1, 1,1]

     

and 

(4.17)   y = –1 

From equation (4.14) and (4.17) 

(4.18)  
4 3g N (a t)

H
y T


   

From (2.3.40) and (2.3.41) we get  

(4.19)  
2T a

R 0,0,0,
T(a t)



 
  

 
 

and  

(4.20)  
a 2T

S 0,0,0,
T(a T)



 
  

 
 

Thus we find that R and S both are null force vectors. R4 and S4 have no Newtonian 

analogues.     
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